A universal transcription pause sequence is an element of initiation factor σ70-dependent pausing

نویسندگان

  • Jeremy G. Bird
  • Eric J. Strobel
  • Jeffrey W. Roberts
چکیده

The Escherichia coli σ70 initiation factor is required for a post-initiation, promoter-proximal pause essential for regulation of lambdoid phage late gene expression; potentially, σ70 acts at other sites during transcription elongation as well. The pause is induced by σ70 binding to a repeat of the promoter -10 sequence. After σ70 binding, further RNA synthesis occurs as DNA is drawn (or 'scrunched') into the enzyme complex, presumably exactly as occurs during initial synthesis from the promoter; this synthesis then pauses at a defined site several nucleotides downstream from the active center position when σ70 first engages the -10 sequence repeat. We show that the actual pause site in the stabilized, scrunched complex is the 'elemental pause sequence' recognized from its frequent occurrence in the E. coli genome. σ70 binding and the elemental pause sequence together, but neither alone, produce a substantial transcription pause.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two transcription pause elements underlie a σ70-dependent pause cycle.

The movement of RNA polymerase (RNAP) during transcription elongation is modulated by DNA-encoded elements that cause the elongation complex to pause. One of the best-characterized pause sequences is a binding site for the σ(70) initiation factor that induces pausing at a site near lambdoid phage late-gene promoters. An essential component of this σ(70)-dependent pause is the elemental pause si...

متن کامل

Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing

A transcription initiation factor, the σ(70) subunit of Escherichia coli RNA polymerase (RNAP) induces transcription pausing through the binding to a promoter-like pause-inducing sequence in the DNA template during transcription elongation. Here, we investigated the mechanism of σ-dependent pausing using reconstituted transcription elongation complexes which allowed highly efficient and precise...

متن کامل

Function of E. coli RNA Polymerase σ Factor- σ70 in Promoter-Proximal Pausing

conformation or components to be modified in vitro by the gene Q antiterminator, as assayed either by foot-printing of Q protein bound in the complex or by transcription antitermination downstream; a complex made Summary of mutant DNA (e.g., mutant at ϩ2 or ϩ6), in which RNA synthesis is stopped by lack of a nucleotide substrate at The ␴ factor ␴ 70 of E. coli RNA polymerase acts not only the s...

متن کامل

Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives λQ antiterminator-dependent escape from a σ70-dependent pause

During initial transcription, RNA polymerase remains bound at the promoter and synthesizes RNA without movement along the DNA template, drawing downstream DNA into itself in a process called scrunching and thereby storing energy to sever the bonds that hold the enzyme at the promoter. We show that DNA scrunching also is the driving force behind the escape of RNA polymerase from a regulatory pau...

متن کامل

CDK9-dependent RNA polymerase II pausing controls transcription initiation

Gene transcription can be activated by decreasing the duration of RNA polymerase II pausing in the promoter-proximal region, but how this is achieved remains unclear. Here we use a 'multi-omics' approach to demonstrate that the duration of polymerase pausing generally limits the productive frequency of transcription initiation in human cells ('pause-initiation limit'). We further engineer a hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016